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The most popular path-dependent options are barrier options, which include double barrier
options. Let a stochastic process St be a model for the chosen stock price dynamics. Recall that
a double barrier option on the stock is a contract which pays the specified amount G(ST ) at the
terminal date T , provided during its lifetime, the price of the stock does not cross specified constant
barriers D from above and U from below. When at least one of the barriers is crossed, the option
expires worthless, or the option owner is entitled to some rebate.

From a probabilistic viewpoint, one can express double barrier option prices in terms of condi-
tional expectation on a payoff function that depends on the underlying stochastic process and its
extrema. Notice that the known results on pricing double barrier options are rather limited. In
analytical terms, the option pricing problem under consideration leads to a matrix Wiener-Hopf
factorization (see details in [3]), which is not analytically available yet. To treat the problem in
general case numerically, one should apply the Laplace transform (or the Carr’s randomization),
then solve two coupled complex integrodifferential equations that require complicated approximate
formulas for the Wiener-Hopf factors. The overview of the existing numerical methods can be
found in [2, 5, 6, 8, 11, 9, 12, 10]. Therefore, pricing double barrier options in exponential Lévy
models remains a computational challenge.

In the paper [10], the author suggested a new approach for pricing exotic options with a payoff
depending on the infimum and supremum of Lévy processes at expiry. The method suggested makes
it easy to implement such a sophisticated tool as the Wiener-Hopf factorization for general Lévy
models with jumps of finite variation. The goal of the current paper is to extend the approach from
[10] to pure non-Gaussian Lévy processes with jumps of unbounded variation. The main advantage
of the method is applying semi-explicit Wiener-Hopf factorization formulas.

A Lévy process is a stochastically continuous process with stationary independent increments
(for general definitions, see, e.g., [4]). A Lévy model may have a Gaussian component and pure
jump component. A Lévy process Xt can be completely specified by its characteristic exponent, ψ,
definable from the equality E[eiξX(t)] = e−tψ(ξ) (we confine ourselves to the one-dimensional case).

The Lévy-Khintchine formula gives the characteristic exponent of a pure non-Gaussian Lévy
process:

−iγξ +

∫
R

(1− eiξx + iξx1[−1,1](x))Π(dx), (1)

where γ ∈ R is the drift, 1A is the indicator function of the set A, and the Lévy measure Π(dx)
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satisfies
∫
R min{1, x2}Π(dx) < +∞. If the condition∫

R
min{1, |x|}Π(dx) < +∞. (2)

does not hold, then the Lévy process Xt is of unbounded variation.
Let T,K,D,U be the maturity, strike, the lower barrier, and the upper barrier, and the stock

price St = DeXt be an exponential Lévy process under a chosen risk-neutral measure which is
pure non-Gaussian with jumps of unbounded variation. Without loss of generality, we confine
ourselves to a double barrier put option. Set the riskless rate and the dividend rate equal to r
and d, respectively. We consider an approach to pricing continuously monitored double barrier put
options without rebate under a Lévy process with the characteristic exponent (1) that does not
satisfies (2).

Let us introduce h = lnU/D. Then the payoff at maturity is 1(0,h)(XT )G(XT ), where G(x) =
(K − Dex)+, and the no-arbitrage price of the double barrier put option at the beginning of a
period under consideration (t = 0) and Xt = x with x ∈ (0, h) given by

V (T, x) = Ex
[
e−rT1XT>01XT<h

G(XT )
]
, (3)

where T is the final date, Xt = inf0≤s≤tXt and Xt = sup0≤s≤tXt are the infimum and the
supremum of the process Xt, respectively. The short-hand notation Ex[·] means that we take the
expectation conditioned on the event X0 = X0 = X0 = x.

Theorem 1. Let N be a sufficiently large natural number. Set q = T/N , v0(q, x) = G(x)1(0,h)(x),
and for n = 1, 2, . . . define

vn(q, x) = Ex
[
vn−1(q,XTq+r)

(1 + r/q)
1XTq+r

>01XTq+r
<h

]
, (4)

where the random time Tq+r ∼ Exp (q + r).
For a fixed x, vN (N/T, x) converges to V (T, x) as N → +∞.

We prove Theorem 1 by using Laplace transform techniques and Post-Widder approximate
formula. Thus, we need a method to compute efficiently the right hand side of (4).

The new approach to calculating (4) requires the following steps. The key idea behind the
method is to represent the process Xt as the sum of spectrally positive jumps X+

t with a non-
negative drift and spectrally negative jumps X−

t with a non-positive drift: Xt = X+
t +X−

t .
Let X+,1

t and X+,2
t be Lévy processes with the same characteristic exponent, i.e. X+,1

t ∼
X+
t and X+,2

t ∼ X+
t . Due to the property of increments of a Lévy process to be stationary

independent and characteristics of the supremum and infimum processes, we conclude that Xt and

Yt(= X+,1
t/2 +X

+,1
t/2 +X

−
t +X−

t +X+,2
t/2 +X

+,2
t/2 ) are identically distributed.

Let a natural number N be sufficiently large and q = N/T . Since the randomized time Tq+r
converges in mean square sense to 0 as N → +∞, we may approximate XTq+r in (4) with YTq+r .
Notice that Tq+r/2 is also an exponentially distributed random variable but with the intensity
parameter equal to 2(q + r). We show that X+

T2(q+r)
and X−

Tq+r
admit semi-explicit Wiener-Hopf

factorizations.



Theorem 2. Let q > 0 be sufficiently large. Then for a fixed ξ ∈ R

E[eiξX(Tq)]− E[eiξY (Tq)] ∼ O(q−2) as q → +∞.

Based on Theorem 2 we suggest the following numerical procedure for computation of (4).

Theorem 3. Let a natural number N be sufficiently large and q = N/T . Introduce the following
operators:

E++u(x) = E[u(x+X
+
Tq+r/2)], E

+
−u(x) = E[u(x+X

−
Tq+r

)];

E−+u(x) = Ex[u(X+
Tq+r/2

)], E−−u(x) = Ex[u(X−
Tq+r

)].

One may approximate vn(q, x) in (4) as follows:

vn(q, x) =
1(0,h)(x)

(1 + r/q)
E+−1(0,h)E++E+−1(0,h)E−−E−+1(0,h)E++vn−1(q, x) +O(q−2) as q → +∞.

The operators E++ , E+− , E−+ and E−− can be efficiently implemented by using the Fast Fourier
Transform (FFT) for real-valued functions (see e.g. [11]).

In the paper, we suggested a new approach for pricing exotic options with a payoff depending
on the infimum and supremum of Lévy processes at expiry. The method suggested makes it easy
to implement such a sophisticated tool as the Wiener-Hopf factorization for general Lévy models
with jumps of unbounded variation.
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[1] S.I. Boyarchenko, S.Z. Levendorskǐi, Non-Gaussian Merton-Black-Scholes Theory, World Scientific Publishing
Co., 2002.
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