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Hodgkin-Huxley-type of models are used for mathematical modeling of the dynamics

of a single neuron [1]. These models demonstrate various types of oscillatory behavior,

including stable equilibrium (resting state), spike and bursting oscillations (oscillatory

activity). These models are described by ordinary nonlinear differential equations and

are characterized by various phenomena, including multistability, when several dynamic

modes coexist in the system [2]. The influence of noise on multistable systems is one of

the classical problems considered in the framework of the theory of nonlinear dynamical

systems [3].

In the frame of this work, we will consider the features of a network of Hodgkin-

Huxley-type of models with bistability in the presence of noise. As a base model, we

consider the modified Sherman model [4]:

τ V̇ = −gCam∞(V )(V − VCa)− gKn(V − VK)− gK2p∞(V − VK)− gSS(V − VK),

τ ṅ = σ(n∞(V )− n),

τSṠ = S∞(V )− S.

(1)

Here, the dynamic variable V is the membrane potential, n is interpreted as the prob-

ability of opening potassium channels, and S is a slow variable in the system that can

describe the concentration of calcium ions in the cell. In general form we will use dy-

namical variable x = (V, n, S).

The sigmoidal functions m∞, n∞, and S∞ describe the opening probabilities of fast

and slow potassium channels:

ω∞(V ) = [1 + exp
Vω − V

θω
]−1, ω = m,n, S. (2)

The function p∞ describes opening probability of pathological potassium channel, which



provide bistability in the model:

p∞(V ) = [exp
V − Vω

θω
+ exp

Vω − V

θω
]−1. (3)

The conductivities of calcium and potassium ion channels correspond to the following

values: gCa = 3.6, gK = 10.0 and gK2 = 0.2. The Nernst potentials (threshold potentials

for ion channel activation) are fixed as follows: VCa = 25 mV and VK = 75 mV. Another

parameters fixed as: τ = 0.02, τS = 35, σ = 0.93, Vm = −20.0, θm = 12.0, Vn = −16.0,

θn = 5.6, VS = −35.0, θS = 10.0, Vp = −47.0, θp = 1.0. Model (1) demonstrates the

bistability between the equilibrium state and the bursting attractor. For initial condition

x1 = (−49.084, 0.027105, 0.19648) stable equilibrium exists, for initial conditions x2 =

(−49, 0.02, 0.17) bursting attractor can be obtained.

Theorem. For any x ∈ R3 exists and unique solution of system (1) with initial

condition x1 or x2. Stable equilibrium point x1 is stable focus.

In [5] it is shown that when noise is added to the system, classical switching between

attractors is not observed; when a certain noise level is reached, the system from the

equilibrium state passes to the bursting attractor and then remains on it. This feature

is due to the fact that the attractor is distant from the equilibrium state in the direction

of the dynamic variable S.

Now we consider a network of similar oscillators whose dynamics was studied in [6]

with the addition of white noise. In this case it possible to find certain interval of coupling

strength when stable equilibrium point will dominate.
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