Elmira Yu. Kalimulina (MSU & IITP RAS, Moscow, Russia). Ergodicity problem of some Jackson networks governed by a random graph.

The talk discusses a modification of an open queuing network, which assumes the following conditions are met: – an open Jackson network consists of N nodes; – Poisson arrival flow with parameter $\Lambda > 0$ and at nodes λ_i , i = 0, 1, ..., N; – exponential service times at nodes with parameters μ_i ; – FIFO service; – the structure is defined by an oriented graph G(t) = (V, E), each node is subject to failure and recovery with some intensities η_i and ν_i , and $R = \{r_{ij}\}, i, j = 0, ..., N$ is the routing matrix. The network process $\xi = (\xi(t), t \ge 0)$ is defined by the following infinitesimal generator:

$$\mathbf{Q}f(\mathbf{n}) = \sum_{i=1}^{N} \sum_{j=1}^{N} (f(T_{0j}\mathbf{n}) - f(\mathbf{n}))\lambda_{i}r_{ij} + \sum_{i=1}^{N} \sum_{j=1}^{N} (f(T_{ij}\mathbf{n}) - f(\mathbf{n}))\mu_{i}(n_{i})r_{ij} + \sum_{k\in G^{+}} (f(T_{k}\mathbf{n}) - f(\mathbf{n}))\nu_{k} + \sum_{k\in G\setminus G^{+}} (f(T_{k}\mathbf{n}) - f(\mathbf{n}))\nu_{k} + \sum_{i=1}^{N} (f(T_{i0}\mathbf{n}) - f(\mathbf{n}))\mu_{i}(n_{i})r_{i0}.$$

Theorem 1. For network process with rerouting $\xi(t)$, that has an infinitesimal generator (suppose bounded) \mathbf{Q} , minimal service intensity $\min_i \mu_i > 0$, and assumptions satisfying the conditions of regularity, the spectral gap $\operatorname{Gap}(\mathbf{Q}) > 0$ iff for each $i = 1, \ldots, N$, the corresponding queuing process with intensities λ_i and $\mu_i(n_i)$ has $\operatorname{Gap}_i(\mathbf{Q}_i) > 0$.

Theorem 2. For the network queuing process $\xi(t)$ with bounded infinitesimal generator \mathbf{Q} , and minimal service intensity $\min_{i} \mu_{i} > 0$, X(t) satisfying the regularity condition, the spectral gap $Gap(\mathbf{Q}) > 0$ iff for each $i = 1, \ldots, N$, distribution $\pi = (\pi_{i}), i \geq 0$ is strongly light-tailed, i.e. $\inf_{k} \frac{\pi_{i}(k)}{\sum_{k=1}^{N} \pi_{i}(j)} > 0$.