Abdrahmanov T.R., Andriyanov N.A., Condratenko A.E., Kopitko M.Y., Oktysiuk K.D., Sobolev V.N., Uliantsev Y.A.

(Moscow, Lomonosov Moscow State University)

About the heritability of uniformity of the *fractional part* of the convolution with a uniform random variable on a tessellation

In [1] the term fractional part was unified. In [2] it was shown that the fractional part of a convolution with a uniform on a square random variable is also uniform on a square. This work continues the generalization of these results.

Definition. A set $M \subset \mathbb{Z}^n$ is called *-connected if each pair of dots from M can be connected by a polygonal chain which segments have unit length and which nodes are elements of M.

Theorem 1. Let $M \subset \mathbb{Z}^n$ be a finite and *-connected set, and \mathbb{Z}^n can be tiled with M. Let $\xi \sim R\{M\}$, η be an independent with ξ integer n-dimensional random variable. Then $\{\xi + \eta\} \sim R\{M\}$.

Theorem 2. Let $M \subset \mathbb{R}^n$ be a bounded connected measurable set, and \mathbb{R}^n can be tiled with M. Let $\xi \sim R\{M\}$, η be an independent with ξ n-dimensional random variable. Then $\{\xi + \eta\} \sim R\{M\}$.

ЛИТЕРАТУРА

- 1. Condratenko A.E., Sobolev V.N. Generalization and unification of the notions division remainder and fractional part, maximization of the entropy of the fractional part of a convolution with uniform distribution // Herald of Tver State University. Series: Applied Mathematics, 2022, N_2 1, 45–52.
- 2. Andriyanov N.A., Condratenko A.E., Sobolev V.N., Uliantsev Y.A. On the Entropy Maximization in Convolution With Uniform Distribution in the Two-Dimensional Case // Herald of Dagestan State University. Series 1. Natural Sciences, 2024, N^o 1, 37-43.