Perevaryukha A. Yu. (Saint-Petersburg, Russia) Hybrid model of COVID waves taking into account the aspect of stochastic evolution.

A new hybrid model of COVID-19 waves is proposed taking into account the stochastic evolution of the virus and incompletely deterministic confrontation with unevenly distributed population immunity specified by susceptibility gradation groups. Random mutations in the S-protein of the virus and strict factors of evolutionary selection form a series of changes in the activity of competing virus lineages. We will define the description of the activation of a new COVID wave in a hybrid structure with probable transitions $P(A_f)$ based on the gradation of the affinity of binding of the S-protein to the receptor. Taking into account the stochastic perturbation τ_1 by a random variable γ in the range $\gamma(\omega) \in [1, 2]$ with a perturbed uniform random variable delay $(t - \tau_1 \gamma)$, we describe the transition to a new form of COVID waves for a more affine variant of the S-protein when occurs $\Delta A_f > 0.1$:

$$\begin{cases} \frac{dY}{dt} = R_2 Y(t) \exp(-\varsigma Y(t - \gamma \tau) - \varepsilon \sqrt{(J - N^2(t - \tau))}, P_1(A_f)) \\ \frac{dN}{dt} = R_1 N(t) \ln\left(\frac{\kappa}{N(t - \tau \gamma)}\right) - \frac{\delta N^2(t - \tau_1 \gamma)}{(J - Y(t - \psi))^2} - \varphi Y(t), P_2(A_f)\delta > q. \end{cases}$$
(1)

Structure (1) takes into account the effect of activation of a new wave of COVID-19 with an increase in the probability of a sufficient number of random mutations. For $Y(0) < J < \mathcal{K}$, $N(t) \to 0 + \epsilon$, the wave attenuation mode will change. The position of the oscillation extrema $N(t) \to N_*(t), \max N_*(t) < J$, $\min N_*(t)$ depends on the delay perturbation. Evolution is preserved with sufficient affinity $A_f > \overline{A}_f$. Theorem 1. There exists $R_1 = \overline{R}$, such that for the event $\lim_{t\to \overline{t}} N(t; \overline{R}_1 \tau) = 0$ the probability P > 0 and $\exists \hat{R}_1 > \overline{R}_1, t < \infty$ for this event P = 1. \hat{R}_1 is the maximum reproductive number of the virus. The hybrid structure describes the influence of the accumulation of adaptive mutations on the transition to a new regime of epidemic oscillations.

REFERENCES

1. Perevaryukha A. Yu. "A Continuous Model of Three Scenarios of the Infection Process with Delayed Immune Response Factors Biophysics, 2021, V. 66, Iss. 2, 327–348.