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The fractionally integrated telegraph process F*(t) is defined by

t
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Here a € (0, 1] is the order of integration.

Such processes are widely used in various fields, including very specific areas
such as models of the physio-chemical mechanism triggering muscle contraction,
see, for example, [I].

The mean MM (¢) and the second moment 92 (¢) of F(t) can be expressed
explicitly.

Futhermore, in the symmetric case co = —c; = ¢ > 0 Xg = A1 = A > 0, we
obtain the following asymptotics.

Theorem 1. For A\t — +o00, we have
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where

K, = / u?* e d (o, 1 4 o; 2u)du.
0

The process F* defined above is not a Markov process. However, it can be
expressed using the Kac-Ornstein-Uhlenbeck process, which is Markov, see [2].

Theorem 2. The fractionally integrated telegraph process F* = F(t) is repre-
sented through the infinite-dimensional Kac-Ornstein- Uhlenbeck process Za(t), B €

(0,00),

Here Zg(t) is defined by the integral equation,

Fo(t) =

t
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where T (t) fo Ce(s)ds is the integrated telegraph process.
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