Random feature-based double Vovk-Azoury-Warmuth algorithm for online multi-kernel learning D.B. Rokhlin, O.V. Gurtovaya Southern Federal University, Rostov-on-Don

We introduce a multi-kernel learning algorithm, VAW², for the online least squares regression problem in reproducing kernel Hilbert spaces (RKHS). The Vovk-Azoury-Warmuth (VAW) algorithm [1, Section 11.8] is used to construct expert strategies from random features generated for each kernel at the first level, and is then used again to combine their predictions at the second level.

Let \mathcal{H}_j be RKHSs with the translation invariant reproducing kernels: $k_j(x, y) = \kappa_j(x-y)$, $\kappa_j(z) = \int_{\mathbb{R}^d} q_j(\omega) \cos\langle \omega, z \rangle \, d\omega$, where q_j are some a probability density functions. To each such kernel we associate a vector $\Phi_{\theta_j}(x) = (\sqrt{2} \cos(\langle \omega_{j,k}, x \rangle + b_{j,k}))_{k=1}^m$, $\theta_j = (\omega_{j,k}, b_{j,k})_{k=1}^m$ of random Fourier features [2], where $\omega_{j,k} \sim q_j$, $b_{j,k} \sim U(0, 2\pi)$ are i.i.d. random variables. Let $(x_t, y_t) \in \mathbb{R}^d \times \mathbb{R}$, $|y_t| \leq Y$, be an arbitrary sequence. Denote by $B_R(\mathcal{H}_j)$ the *R*-ball in \mathcal{H}_j .

Theorem 1 Let $w_{t,j} \in \mathbb{R}^m$ be generated by the VAW algorithms applied to $(\Phi_{\theta_j}(x_t), y_t)$, and $\alpha_t \in \mathbb{R}^N$ be generated by the VAW algorithm applied to (z_t, y_t) , where z_t is the vector of expert predictions: $z_t = (\langle w_{t,1}, \Phi_{\theta_1}(x_t) \rangle, \ldots, \langle w_{t,N}, \Phi_{\theta_N}(x_t) \rangle)$. Then

$$\mathsf{E}\sum_{t=1}^{T} (\langle \alpha_t, z_t \rangle - y_t)^2 \leq \min_{1 \leq j \leq N} \inf_{f_j \in B_R(\mathcal{H}_j)} \sum_{t=1}^{T} (y_t - f_j(x_t))^2$$
$$+ O\left((R^2 + Y^2 \ln T) \sqrt{T} \right), \quad provided \quad m \propto \sqrt{T},$$

REFERENCES

1. Cesa-Bianchi, N., Lugosi, G. Prediction, learning, and games. Cambridge University Press, 2006.

2. Rahimi, A., Recht, B. Random features for large-scale kernel machines//Advances in neural information processing systems, vol. 20, pp. 1177–1184, 2007.