Stepovich M. A., Turtin D. V., Seregina E. V.*, Kalmanovich V. V.*, Filippov M. N.** (Ivanovo, *Kaluga, **Moscow, Russia). On one possibility of constructing a stochastic model of target heating by an electron beam of medium energies. A stochastic model of target heating during its irradiation with an electron beam of medium (up to 50 keV) energies is considered. The following theorem is proved

Theorem. For the mathematical model of target irradiation by an electron beam of medium energies and the distribution of energy losses by the electron beam in the target in the form $\rho(\vec{r}, t) = \rho^*(\vec{r}) \cdot f(t)$, where the factor $\rho^*(\vec{r})$ corresponds to stationary irradiation, and the factor $f(t) \sim \sin(\omega t)$ corresponds to the non-stationary part, that can change randomly, the heating temperature of the target is determined as

$$T(\vec{r}, t) = \frac{1}{c_0 \rho_0} \int_0^t \int_{-\infty}^{+\infty} \int_0^{+\infty} \int_0^{+\infty} \frac{\rho^*(\xi) f(\tau)}{\left[2a\sqrt{\pi(t-\tau)}\right]^3} \exp\left\{-\frac{|\vec{r}-\xi|^2}{4a^2(t-\tau)}\right\} d\xi d\tau,$$

where $d\xi = d\xi_1 d\xi_2 d\xi_3$, $\rho^*(\xi) = \rho^*(\xi_1, \xi_2, \xi_3)$, $|\vec{r} - \xi|^2 = (x - \xi_1)^2 + (y - \xi_2)^2 + (z - \xi_3)^2$.

For parameters typical for electron beam technologies, the target heating estimate is given by the formula

$$T(x, y, z, t) = \frac{b^5 \left[1 + \sin(\omega t)\right]}{16a^2 e \sqrt{\pi} c_0 \rho_0} \cdot \frac{1}{zz_0} \sqrt{\frac{4a^2 t + z_0^2}{4a^2 t + b^2}} \cdot \left(-\frac{1}{x^2 + y^2 + z^2}\right) \times \left[\exp\left(-\frac{x^2 + y^2 + z^2}{b^2}\right) - \exp\left(-\frac{x^2 + y^2 + z^2}{4a^2 t + b^2}\right)\right].$$

The influence of random changes in the function f(t) on the nature of target heating is considered.

The study was carried out within the framework of a grant No. 2025–1–1 supported by the Federal Budgetary State Educational Institution of Higher Education "Ivanovo State University".