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The First International Conference on Stochastic Methods was held May 27–June 3, 2016,
in the village of Abrau-Durso (at the Moryak Hotel) on the Black Sea coast. This conference
was a continuation of the All-Russian School-Colloquium on Stochastic Methods regularly
held (20 times) in different places in the Russian Federation. The organizers of this confer-
ence were Steklov Mathematical Institute RAS (Department of Theory of Probability and
Mathematical Statistics), Lomonosov Moscow State University (Department of Probability
Theory), and Don State Technical University (Department of Higher Mathematics) (Rostov-
on-Don). The chairman of this conference was academician of the RAS A. N. Shiryaev.
The conference committees were as follows. Organizing Committee: I. V. Pavlov (Deputy
Chairman), E. V. Burnaev, M. V. Zhitlukhin, V. V. Shamraeva, and S. Ya. Shatskikh; the
Program Committee: P. A. Yaskov (Deputy Chairman), Yu. E. Gliklikh, S. B. Klimentov,
V. V. Ulyanov; the Publishing Committee: T. B. Tolozova, E. B. Yarovaya. Technical prob-
lems at the conference were considered by the Local Committee: I. V. Pavlov (Chairman),
V. V. Shamraeva (Deputy Chairman), S. I. Uglich.

In addition to scientists from Russia, scientists from the USA and Uzbekistan took part
in the conference. Eleven 40-minute keynote talks, 20 section talks, and 14 poster presen-
tations were given. The themes of the keynote talks were the following: A. N. Shiryaev,
Randomness in probability; A. A. Lykov (jointly with V. A. Malyshev and M. V. Melikyan),
New applications of stochastic methods in physics, P. A. Yaskov, On necessary and sufficient
conditions in the Marchenko–Pastur theorem on spectral distributions of random matrices;
E. B. Yarovaya, Stochastic evolution of a particle system in a noncompact phase space: An
approach focused on branching random walks; V. V. Ulyanov, On a common approach to
estimates of approximation exactness; O. E. Kudryavtsev, New approaches to the calcu-
lation of the prices of exotic options in Lévy models; M. V. Zhitlukhin, K. A. Borovkov,
Yu. S. Mishura (jointly with A. A. Novikov), On maxima of Gaussian processes and their
approximations; Ya. I. Belopolskaya, Stochastic models of conservation laws in physics and
biology; Yu. E. Gliklikh, Description of the motion of a quantum particle in the classic gauge
field in the language of stochastic mechanics; S. Ya. Shatskikh (jointly with L. E. Melkumova),
Geometry of conditional quantiles of multidimensional probability distributions; I. V. Pavlov,
Stochastic analysis on deformed structures: Survey of results and main directions for further
research.

The conference was financially supported by Russian Foundation for Basic Research
grant 16-01-20190G.

The Second International Conference on Stochastic Methods will held at the end of May
2017 at the same location.

A. N. Shiryaev, I. V. Pavlov, T. B. Tolozova, V. V. Shamraeva

http://www.siam.org/journals/tvp/61-3/T98833.html
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S. Zh. Aibatov, L. G. Afanasyeva (Moscow, Russia) — Subexponentiality condi-
tions of stationary waiting time in a single-server queue with regenerative input
flow.

A single-server queue with a regenerative input flow and random service time of the
request is considered. The input flow X(t) is a total task received by the system during
the time period (0, t]. The sequence {θn}∞n=1 (θ0 = 0) is the regeneration points of X(t).
Denote τn = θn − θn−1, γn = X(θn)−X(θn−1). Assume that E τn <∞ and E γn <∞. Let
G(y) = Prob (γn 6 x), G(y) = 1−G(y), GI(x) = (E γn)−1

∫ x
0
G(y) dy.

Let us introduce a process of virtual waiting time W (t) and embedded processes Wn =
W (θn − 0), wn = W (tn − 0), where tn is a moment of the nth jump of the process X(t).
Assume that the traffic coefficient of the system ρ = E γn/E τn < 1; then processes W (t),
Wn, wn have limit stationary distributions Ψ(x), Φ(x), F (x), respectively.

Theorem 1. Let GI(x) be a subexponential distribution function and Prob (γn > y +
τn) ∼ G(y) as y →∞; then as x→∞

(1) 1− Φ(x) ∼ ρ

1− ρG
I(x).

Under some additional assumptions the asymptotic (1) is true for functions Ψ(x) and
F (x). We have applied Theorem 1 to the classical system Reg/G/1/∞, where it is assumed
that the service times are independent identically distributed random variables which do
not depend on the input flow A(t). (A(t) is the number of claims received by the system
during (0, t].)

Yu. V. Averbuch (Ekaterinburg, Russia) — Approximate solutions of stochastic
continuous-time games.1

In this talk, based on [1], we consider a stochastic controlled continuous-time system.
In the initial problem a near-optimal strategy is constructed on the solution of the control
problem for a modeling system. It is assumed that this solution is known. The dynamics of
each system is specified by a Lévy–Khintchine-type generator. It is also assumed that each
system is controlled by two players with opposite objectives. For simplicity, we assume that
the purpose of the first (respectively, second) player is to minimize (respectively, maximize)
variables E g(X(T )).

We introduce a notion of a u-stable function for the modeling system. The main result is
as follows: If c+ is a u-stable function for the modeling system, then the upper price function
in the initial game Val+(s, y) does not exceed c+(s, y) +R ·C

√
κ +M1

0 +M2
0 . Herein R is a

Lipschitz constant for the payoff function g; C is determined by the Lipschitz constants for
the dynamics functions; κ gives “the distance” between the initial and modeling systems;
M i

0, i = 1, 2, describe the degree “of stochasticity” of the initial and modeling systems.
Based on this statement, we can construct a near-optimal control in a system with a large
number of particles with a finite number of states that approximates the optimal control in
the limiting deterministic system. Independently, this result was obtained in [2].

REFERENCES

[1] Yu. Averboukh, Extremal Shift Rule for Continuous-Time Zero-Sum Markov Games, preprint,
arXiv:1412.0643, 2014.

[2] Yu. Averboukh, Extremal shift rule for continuous-time zero-sum Markov games, Dynamic
Games Appl., 7 (2017), pp. 1–20.

Ya. I. Belopolskaya (St. Petersburg, Russia) — Stochastic models of conserva-
tion laws in physics and biology.2

Our talk is devoted to the establishment of connections between systems of nonlin-
ear parabolic equations, arising as mathematical models of various phenomena in physics,

1This work was supported by RFFR grant 15-01-07909.
2This work was supported by RFFR grant 15-01-01453.
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chemistry, biology, and other fields, and the theory of stochastic equations. We discuss the
probabilistic interpretation of classical and generalized solutions of the Cauchy problem for
systems of nonlinear parabolic equations of two types: (1) with diagonal entry of highest or-
der terms (and, in particular, for parabolic perturbations of hyperbolic conservation laws and
balance); (2) for systems with nondiagonal entry of highest order terms (parabolic systems
with cross-diffusion). Special attention is paid to the problem of constructing probabilistic
representations of generalized solutions of the Cauchy problem for systems of both types.

A common approach to the construction of a probability representation (classical, gen-
eralized, or viscous) of the solution of the Cauchy problem for nonlinear parabolic equations
and systems can be divided into three steps. In the first step, we construct a probability
representation for the desired solution of the Cauchy problem, assuming that such a solution
exists and is unique and twice differentiable. In the second step, we construct a closed sys-
tem of stochastic relations, including the probability representation obtained in the first step,
and assuming that the solution of this stochastic system, which has the required properties,
exists, we need to verify that as a result we have simultaneously constructed the required
solution of the Cauchy problem for the initial system of parabolic equations. Finally, in
the third step, rejecting any a priori assumptions, it is necessary to investigate the closed
stochastic system obtained in the second step to prove the existence and uniqueness of its
solution and to verify whether this solution has the required properties or not.

Note that this approach is effective in the construction of classical and generalized
solutions and in the construction of viscous solutions for systems of type (1). For these
systems all three of the above-described steps of constructing classical [1], [2], generalized [3],
and viscous [4] solutions of the Cauchy problem were realized. For systems of type (2) only
the first two steps of the above-described approach to the construction of a generalized
solution of the Cauchy problem (see [5]–[7]) were realized.

REFERENCES

[1] Ya. I. Belopol’skaya and Yu. L. Daletskii, Study of the Cauchy problem for quasilinear
parabolic systems using Markov random processes, Soviet Math. (Iz. VUZ), 22 (1978),
pp. 1–10.

[2] Ya. I. Belopol’skaya and Yu. Dalecky, Stochastic Equations and Differential Geometry,
Kluwer Academic Press, Norwell, MA, 1990.

[3] Ya. I. Belopol’skaya and W. Woyczynski, Generalized solutions of the Cauchy problem for
systems of nonlinear parabolic equations and diffusion processes, Stoch. Dyn., 11 (2012),
pp. 1–31.

[4] Ya. I. Belopol’skaya, Probabilistic counterparts of nonlinear parabolic PDE systems, Modern
Stoch. Appl., 90 (2014), pp. 71–94.

[5] Ya. I. Belopol’skaya, Markov processes associated with fully nondiagonal systems of parabolic
equations, Markov Process. Relat. Fields, 20 (2014), pp. 452–478.

[6] Ya. I. Belopol’skaya, A stochastic model for the Lotka–Volterra system with cross-diffusion,
J. Math. Sci., 214 (2016), pp. 425–442.

[7] Ya. I. Belopol’skaya, Stochastic interpretation of quasilinear parabolic systems with cross-
diffusion, Theory Probab. Appl., 61 (2017), pp. 208–234.

E. V. Burnaev and A. A. Artemov (Moscow, Russia) — Allocation of trend
from long-memory noise and detection of disorders in the background.3

We consider the problem of estimating the parameter θ = (θ1, . . . , θn) of the drift
coefficient of fractal Brownian motion, which has the form

∑n
i=1 θiϕI(t), where ϕi(t), i =

1, . . . , n, is a set of known functions. For θ the maximum likelihood estimate is obtained,
as well are Bayesian estimates for normal and uniform a priori distributions (see [1]). On
the basis of the obtained estimates, an algorithm for allocating the quasi-periodic trend and
detecting disorders in the background has been developed. The definition of the moment

3This work was supported by IITP RAS and RSF grant 14-50-00150.
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time of the “alarm” in the form τ = inf{t > 0: at > h}, where at = ψ(λ,S1
t , . . . ,S

d
t ), λ are

the adjusting parameters of the aggregation function ψ(·), Skt = {sks , 0 6 s 6 t}, k = 1, . . . , d,
are trajectories of the standard statistics {skt }dk=1 for the disorder detection, permitted us
to increase significantly the accuracy of the disorder detection (see [2]). Application of
the developed algorithm is illustrated by the example of solving the problem of predictive
maintenance of software-loaded systems (see [3]).

REFERENCES

[1] A. A. Artemov and E. V. Burnaev, Optimal estimation of a signal, perturbed by a fractional
Brownian noise, Theory Probab. Appl., 60 (2016), pp. 126–134.

[2] A. A. Artemov and E. V. Burnaev, Ensembles of detectors for online detection of transient
changes, Proc. SPIE, ICMV 2015, 9875 (2015), pp. 1Z1–1Z5.

[3] A. A. Artemov, E. V. Burnaev, and A. S. Lokot, Nonparametric decomposition of quasi-
periodic time series for change-point detection, Proc. SPIE, ICMV 2015, 9875 (2015),
pp. 201–205.

E. A. Chernavskaya and E. E. Bashtova (Moscow, Russia) — Limit theorems
for an infinite-server queuing system and regenerating input flow.4

We consider an infinite-server queuing system with a regenerating input flow X(t), with
regeneration points {θi, i > 0}, θ0 = 0. This system is a generalization of the system in [1].
Denote ξi = X(θi) − X(θi−1), τi = θi − θi−1, i > 1. Let the service times be a sequence
of independent identically distributed random variables with the distribution function B(t).
We assume that 1 − B(t) ∼ L(t)tβ for t → ∞, where 0 < β < 1 and L(t) is a slowly
varying function. Let q(t) be the number of requests served in the system at time t. Denote
κ = (1− β)−1E ξ1/E τ1.

Theorem. Let E τr1 <∞, r > 2, E ξ21 <∞; then

q(t)− κt1−βL(t)√
t1−βL(t)

d→ N (0, κ) for t→∞.

REFERENCES

[1] N. Kaplan, Limit theorems for a GI/G/∞ queue, Ann. Probab., 3 (1975), pp. 780–789.

Yu. E. Gliklikh (Voronezh, Russia) — Description of the motion of a quantum
particle in the classic gauge field in the language of stochastic mechanics.5

This talk is devoted to the development of some of the results of [1], [2], [3], [4], [5], [6],
and [7]. Nelson’s stochastic mechanics is a mathematical theory based on classical physics,
but it gives the same predictions as quantum mechanics for a wide class of problems where
both theories are applicable. We can assume that stochastic mechanics is a special method of
quantization different from the Hamiltonian and Lagrangian (in terms of integrals) methods.
One of the main distinguishing features of stochastic mechanics is that it is the quantized
Newton’s second law, not the Hamilton or Lagrange equations. The stochastic analogue of
Newton’s law is known as the Newton–Nelson equation.

The main notion used to describe the Newton–Nelson equations is the so-called mean
derivatives of stochastic processes, introduced by Nelson, as well as the quadratic mean
derivative introduced in [1] (see also [2] and [3]). Note that equations with mean derivatives
are now used also in other models in physics, economics, etc.

At present, a large number of problems of quantum theory, both ordinary and relativistic
(in the relativistic case the definition of mean derivatives had to be modified, since it turned
out that the classical derivatives are noncovariant with respect to the Lorentz transformation)

4This work was supported by RFFR grant 16-01-00184.
5This work was supported by RFFI grant 14-21-00066 by Voronezh State University.
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were investigated in the language of stochastic mechanics. However, there was no description
of the motion of a quantum particle in a gauge field, apparently due to the fact that previously
there was no description of the classical particle in a gauge field in terms of Newton’s second
law. This description was proposed in [4] (see also [2] and [3]), which proposed a special
second order equation for a bundle with connection, which was interpreted as Newton’s
second law describing the motion of a classical particle in a classical gauge field. Basing
on this investigation we study the appropriate Newton–Nelson equation in bundles with
connections. We consider two cases: when the bundle base is the Riemann manifold and the
bundle itself (main and vector) is real, and when the bundle base is a space–time general
theory relativity and the bundle is complex. The latter case is interpreted as a description
of motion of a relativistic quantum particle in a classical gauge field. For a particular case
of the symmetry group U(1) we analyze the connection with quantum electrodynamics.
Preliminary versions of these results were published in [5], [6], and [7].
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Methods, 40 (2011), pp. 3630–3640.

[6] Yu. E. Gliklikh and N. V. Vinokurova, On the Newton–Nelson type equations on vector
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S. D. Gorban (Moscow, Russia) — The sequential testing problem on a finite
horizon for fractal Brownian motion.

Let the observed process (Xt)t≥0 be such that Xt = θµt + σBHt , where (BHt )t≥0 is a
fractal Brownian motion with the Hurst exponent H, µ 6= 0, σ2 > 0, and θ is a random
variable independent of BH and taking two values P(θ = 1) = π and P(θ = 0) = (1 − π).
The sequential testing problem is to find the optimal decision rule (τ, d), where 0 6 τ 6 T is
a stopping time with respect to the natural filtration of the process X, and d is an FXτ -
measurable random variable taking values 0 and 1:

(τ∗, d∗) = arg min
(τ,d)

Eπ [τ + aI(d = 0, θ = 1) + bI(d = 1, θ = 0)] .

With the help of integral transformation, which was introduced by A. A. Muravlev in [2],
and time substitution it is possible to reduce the problem for fractal Brownian motion to the
corresponding problem for the Wiener process with nonlinear penalty on inquiry. We show
that sequential hypotheses testing is reduced to the optimal stopping problem and to the
associated free boundary problem with. Similarly [1], it is established that the continuation
set decreases “sharply” at the terminal time moment.

REFERENCES

[1] S. D. Gorban, Asymptotic properties of the solution to the sequential testing problem on a
finite horizon, Russian Math. Surveys, 70 (2015), pp. 775–776.
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[2] A. A. Muravlev, Methods of sequential hypothesis testing for the drift of a fractional Brownian
motion, Russian Math. Surveys, 68 (2013), pp. 577–579.

A. S. Grechko and O. E. Kudryavtsev (Rostov-on-Don, Russia) — Features of
construction of the index of volatility of the Russian derivatives market, taking
into account possible price jumps.6

Recently, the volatility of the Russian currency and stock markets has increased signifi-
cantly; as a result, the need for risk hedging with the help of the derivatives market instru-
ments of the Moscow stock exchange increased. There was a need for a Russian volatility
index RVI, an analogue of the U.S. index VIX.

The analysis carried out by the authors of [1] shows that the existing indices based on
the free-model volatility formula poorly estimate the realized volatility in the case of the
Russian market.

This technique can be applied for diffusion processes and processes with rare jumps, but
Lévy processes with unbounded variation — for example, the well-known CGMY model —
are most suitable. The authors obtained the free-model volatility formula for Lévy processes,
which was tested for real data from the Russian derivatives market. Thus, we obtained a
new methodology for calculating the volatility index, taking into account the jumps in the
dynamics of the RTS index.

REFERENCES

[1] A. S. Grechko and O. E. Kudryavtsev, A study of volatility of the Russian derivatives
market, Surveys Appl. Industr. Math., 22 (2015), pp. 592–593 (in Russian).

[2] P. Carr, R. Lee, and L. Wu, Variance swaps on time-changed Lévy processes, Finance Stoch.,
16 (2012), pp. 335–355.

N. V. Gribkova (St. Petersburg, Russia) — Probabilities of large and moderate
deviations of truncated L-statistics.

Let X1, X2, . . . be a sequence of independent identically distributed random variables,
Xi ∈ R, with a distribution function F ; X1:n 6 · · · 6 Xn:n be order statistics corresponding
to the first n observations; F−1(u) = inf{x : F (x) > u}, 0 < u < 1; Fn and F−1

n be
the empirical distribution function and its inversion function, respectively. We consider a
(weakly) truncated mean

Tn =
1

n

n−mn∑
i=kn+1

Xi:n =

∫ 1−βn

αn

F−1
n (u) du,

and let

µn =

∫ 1−βn

αn

F−1(u) du,

where kn,mn are integers, 0 6 kn < n − mn 6 n, kn ∧ mn → ∞, n → ∞, αn = kn/n,

βn = mn/n. Let ξν = F−1(ν), 0 < ν < 1, introduce Winsorized random variables W
(n)
i =

ξαn ∨ (Xi ∧ ξ1−βn). Denote σW,n = (D(W
(n)
i ))1/2 and assume that lim inf σW,n > 0.

One of the main results of our topic is the following theorem on moderate deviations for
weakly truncated sums.

Theorem. Assume that E |X1|p <∞ for some p > c2 + 2 (c > 0), and assume also that
logn/(kn ∧mn)→ 0 and αn ∨ βn = o((logn)−2p/(p−2)). Then

P

(√
n(Tn − µn)

σW,n
> x

)
= [1− Φ(x)](1 + o(1)),

P

(√
n(Tn − µn)

σW,n
< −x

)
= Φ(−x)(1 + o(1))

6This work was supported by RHSF grant 15-32-01390.
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uniformly in x in −A 6 x 6 c
√

logn (A > 0).
The proof is based on the approach proposed in [1].

REFERENCES

[1] N. V. Gribkova, Cramér type large deviations for trimmed L-statistics, Probab. Math. Statist.,
37 (2017), pp. 101–118.

Yu. V. Gusak (Moscow, Russia) — Stability of the solution of the optimization
problem in one insurance model.

The discrete-time model of an insurance company is considered. It is assumed that the
annual claims form a sequence of independent identically distributed nonnegative random
variables {Xn}n>1 such that Xn ∼ law (X), n > 1. In order to avoid ruin, additional capital
injections and reinsurance are made. According to the reinsurance contract, the level of one’s
own retention for the current year is determined at the beginning of the year. Additional
injections are made at the end of the year if the company’s capital falls below a fixed level
a. Reinsurance parameters minimize the total expected injections for n years, provided
that insurance and reinsurance premiums were calculated on the average principle with a
safety load (see [1]). The stability of the minimal expected injections and optimal model
parameters with respect to the change in the distribution of insurance claims is estimated.
Namely, if the claims {Xn}n>1 have a distribution law (Y ) different from law (X), and if
the quantities X and Y are close in the Kantorovich metric, we derive an estimate for
supu>a |hnX (u) − hnY (u)|, where u is the initial capital of the company, and hnX (u) and
hnY (u) are minimal injections for Xn ∼ law (X) and Xn ∼ law (Y ), respectively.

Because in practice the distribution of claims is usually unknown, the stability of the
solution and the key characteristics of the model are studied when the theoretical distribution
is replaced by an empirical distribution.

REFERENCES

[1] E. V. Bulinskaya, J. V. Gusak, and A. A. Muromskaya, Discrete-time insurance model with
capital injections and reinsurance, Methodol. Comput. Appl. Probab., 17 (2015), pp. 899–
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S. B. Klimentov (Rostov-on-Don, Russia) — Some “pathological” solutions to a
Beltrami equation.7

We construct an example of a bounded solution of a uniformly elliptic Beltrami equa-
tion in the unit disk D that has no nontangential limit values a.e. on Γ = ∂D, and also an
example of a solution of this equation bounded in D which is not identically zero, having
zero nontangential limit values a.e. on Γ. These examples show that, in the general case
for the Hardy classes of solutions of a Beltrami equation (and to more general noncanonical
first-order elliptic systems), the usual statement of boundary value problems used for holo-
morphic and generalized analytic functions is ill-posed and also makes it possible to construct
examples of random (nondiffusion) processes in D with probability one going to the set of
zero linear measure on Γ.

O. E. Kudryavtsev (Rostov-on-Don, Russia) — New approaches to the calcula-
tion of exotic options prices in Lévy models.8

Calculation of exotic options prices (barrier, lookback, etc.), including an estimation of
the liquidity risk or output of price for a fixed level, is based on the behavior of the processes
of the supremum (infimum) of the price whose characteristic functions in the case of general
Lèvy models do not have formulas convenient for numerical realization.

7The work was supported by the scientific plans of the Southern Federal University and the
Vladikavkaz Scientific Center of the Russian Academy of Sciences.

8This work was supported by RHSF grant 15-32-01390.
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Let Xt be a Lévy process. Consider the Laplace–Carson transform of the characteristic
functions of the supremum process Xt = sup06s6tXs and infimum process Xt = inf06s6tXs:

φ+
q (ξ) = E [eiξXT ] and φ−q (ξ) = E [eiξXT ], where T ∼ Exp q. For a wide class of Lèvy

processes the following theorem is proved [1].
Theorem 1. There are constants ω− < 0 and ω+ > 0 such that
(a) φ+

q (ξ) admits an analytic continuation for =ξ > ω− and can be represented in the

following form: φ+
q (ξ) = exp[iξF+(0)− ξ2F̂+(ξ)], where

(1) F+(x) = I(−∞,0](x)(2π)−1

∫ +∞+iω−

−∞+iω−

eixη
ln(q + ψ(η))

η2
dη;

(2) F̂+(ξ) =

∫ +∞

−∞
e−ixξF+(x) dx.

(b) φ−q (ξ) admits an analytic continuation to semiplane =ξ < ω+ and can be represented

in the following form: φ−q (ξ) = exp[−iξF−(0)− ξ2F̂−(ξ)], where

(3) F−(x) = o[0,+∞)(x)(2π)−1

∫ +∞+iω+

−∞+iω+

eixη
ln(q + ψ(η))

η2
dη,

(4) F̂−(ξ) =

∫ +∞

−∞
e−ixξ F−(x) dx.

Formulas (1)–(4) can be efficiently realized numerically using a fast Fourier transform.
Applying the Gaver–Stehfest algorithm to the function φ+

q (ξ), we obtain the character-
istic function of the random variable XT . The distribution function of the value XT can
be expressed in terms of the Fourier integral, whose value can be calculated using the fast
Fourier transform. The inverse distribution function can be obtained by linear interpolation
and used to construct Monte-Carlo methods that simulate the joint distribution of the maxi-
mum and the values of the Lévy process at a fixed time with the Wiener–Hopf factorization.
A similar result can be obtained for the infimum processes.

On the other hand, formulas (1)–(4) can be used to solve problems of calculating the
arbitrage-free prices of exotic options by the Wiener–Hopf method (see [2]) for more accurate
approximation of the factors.
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D. I. Lisovskii and M. V. Zhitlukhin (Moscow, Russia) — Disorder problem for
the Brownian bridge.

We consider the problem of early detection of the change in drift for the Brownian bridge
process in the Bayesian setting. We observe a random process X = (Xt)06t61, given by the
SDE

dXθ
t =

µI{t>θ} −Xθ
t

1− t dt+ dBt,

where µ > 0 is a known numerical parameter, B = (Bt)06t61 is a standard Brownian
motion, and θ is a random variable uniformly distributed on the interval [0, 1] (the unobserved
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moment of the disorder). The following risk function is considered: infτ∈M Eθ(I{τ<θ}+c(τ−
θ)+), where the constant c > 0 (payment for observations), and M is the class of stopping

times with respect to the filtration (FX
θ

t )06t61. Here, the averaging is performed with respect
to the special constructed measure Probθ (see [1]). We have to prove that the formulated
problem of debugging is equivalent to the problem of optimal stopping infτ∈M E1(1 − τ +
c
∫ τ
0
ψs ds), where the process ψs is a Shiryaev–Roberts statistic, more precisely, dψt =

dt + ψt(µ/(1− t)) dBt, ψ0 = 0 for any t ∈ [0, 1). Infimums in these problems are achieved
at the same stopping time. To solve the optimal stopping problem, we apply the methods
described in [2]; in particular, both numerical methods and Monte-Carlo methods are used.
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A. A. Lykov, V. A. Malyshev, and M. V. Melikyan (Moscow, Russia) — New
applications of stochastic methods in physics.

The second half of the previous century was characterized by fantastic development of
probabilistic methods in equilibrium statistical physics. This presentation is devoted to new
rigorous mathematical results in nonequilibrium statistical physics.

1. We consider a Hamiltonian system of N particles with quadratic interaction, defined
by a positive definite matrix V . This is the worst system in the sense of convergence to
equilibrium because of the existence of invariant tori. Nevertheless, it is proved [2] that if
at least one of the particles is acted upon by an external random stationary force f(t) with
dissipation, then for almost all V the following convergence theorem holds: For any initial
conditions, convergence to a unique invariant measure µ holds. In this case µ will be a Gibbs
measure for a given system of N particles only if the stationary process f(t) has no memory,
so it is a white noise. The temperature depends on the variance of the white noise and
the dissipation parameter. The natural hypothesis is that for systems with more complex
interaction it will be the same, since the widespread view is that nonlinear Hamiltonian
systems have (in general) better mixing than linear systems.

2. We consider the same Hamiltonian system, but the random effect on one isolated
particle has a completely different character. Namely, at random moments of time, the sign of
the velocity of the selected particle is replaced, that is, the energy-preserving transformation.
In [1] it is proved that, for any initial states, convergence to the Liouville measure takes place
on the corresponding energy surface.

3. The problem of breaking a time-varying chain of molecules, in which the extreme left
particle is fixed, and on the extreme right a constant tensile external force acts. In [3], a
procedure, called in physics the double scaling limit, was used to find the exact picture (in
the parameter space) of the phase transition.

4. Transport flows of a large number of particles. In [4] and [5], the flow of particles on
a straight line with a leader is considered, where the leader moves at will, and the motion
of any other particle depends only on its distance to the previous particle. This system will
no longer be Hamiltonian. The problem of optimal control of the stability is considered
eliminating collisions of particles and increasing the flow density. A phase diagram with
regions of stability, instability, and partial stability is obtained.
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A. A. Muromskaya (Moscow, Russia) — The work model of a joint-stock in-
surance company using a dividend strategy with a step function of the barrier.

Consider Sparre Andersen’s model, according to which the capital of an insurance com-
pany paying dividends at time t has the form X(t) = x+ct−

∑N(t)
i=1 Xi−D(t), t > 0 (see [1]).

Here, c is the intensity of premium income, N(t) is the renewal process, and D(t) is the total
dividends paid to the time moment t. Random variables {Xi}, denoting the size of claims,
are independent and identically distributed. In addition, {Xi} and the process N(t) are also
assumed to be independent. Dividends are paid in accordance to a barrier strategy with a
barrier level b(t) such that b(t) = bi on half-intervals of the form t ∈ [Ti−1, Ti), i > 1, where
Ti is the time of arrival of the ith claim, T0 = 0. Within the framework of this model, an
upper bound was obtained for the probability of ruin of a company (an analogue of Lund-
berg’s inequality [2] for the case of dividend payments). An example of a strategy with a step
function of the barrier is given, for which the estimate is less than 1. Under the additional
condition that N(t) is a Poisson process, a stronger inequality for the ruin probability is also
proved.
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I. V. Pavlov (Rostov-on-Don, Russia) — Stochastic analysis on deformed struc-
tures: Survey of results and main directions for further research.9

This talk focuses on processes with discrete time, defined on structures more general than
a standard stochastic basis. We call these structures deformed stochastic bases of the first
and second kind. (The choice of terminology is argued in detail in [1].) Namely, let (Ω,F) be a
filtered space with discrete time, where Ω is an arbitrary set and F = (Fn)∞n=0 is an increasing
sequence of σ-algebras. The family Q = (Q(n),Fn)∞n=0 of probability measures Q(n), defined
on Fn, is called D1 — first kind deformation (respectively, D2 — second kind deformation)
if Q(n+1) | Fn � Q(n) (respectively, Q(n+1) | Fn � Q(n)) for any n ∈ N = {0, 1, . . . }.

The fundamental role of classical martingales in various branches of mathematics (es-
pecially in financial mathematics) is well known. Using deformations, we introduce the
concepts of deformed martingales of the first and the second kind. For any n ∈ N let
random variables Zn belong to L1(Ω,Fn, Qn), and let Q be D1 (respectively, D2). The
process Z = (Zn,Fn, Qn)∞n=0 is called the DM1 — deformed martingale of the first (re-
spectively, DM2 — second) kind if, for any n ∈ N Q(n+1)-a.s. (respectively, Q(n)-a.s.),

Zn = EQ
(n+1)

[Zn+1 | FN ]. Analogously we define deformed supermartingales and submartin-
gales (DSupM1, DSupM2, DSubM1, DSubM2), deformed local martingales (DLM1, DLM2),
and deformed potentials (DP1, DP2).

A number of results published by the author in the past three years (co-authored with
O. B. Nazarko) are analyzed and supplemented in the report: (1) Doob-type decomposition

9This work was supported by RFBR grants 16-01-00184, 16-07-00888, and 16-01-20190.
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for DSubM1; (2) the Krikeberg-type decomposition for DM2 and the Riesz-type decom-
position for DSupM2; (3) Doob-type optional sampling theorem for DSubM1 and DSubM2;
(4) characterization of DLM1 in terms of deformed martingale transformations and deformed
generalized martingales; (5) reduction of deformation of the first kind to weak deformations;
(6) applications to financial mathematics; (7) concepts of deformed stochastic bases and de-
formed martingales in continuous time. The statements and proofs of all these results can
be found in [2], [3], [4], [5], [6], and [7].
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E. L. Presman, V. I. Arkin, and A. D. Slastnikov (Moscow, Russia) — The
structure of the continuation set in the problem of optimal stopping of general
one-dimensional diffusion.10

Regular diffusion Xt (t > 0), X0 = x with values in the interval I is considered. If
the measures of velocity and killing have densities and the scale is twice differentiable, Itô
diffusion is obtained. In [1] it was suggested consider necessary and sufficient conditions
that the continuation set C={x : g(x)<V (x)}, where V (x)= supτ Exg(X tau), has some sort
of structure. For a continuation set of the form C={x ∈ I : x<p} such conditions under
additional assumptions on the payoff function and the presence of discounting were obtained
in [1] for Itô diffusion and in [2] (conditions of another type) for general diffusion without
killing, and formulated in [3] without additional assumptions on diffusion and the payoff
function. We obtain necessary and sufficient conditions of the insular nature of continuation
set: C={x ∈ I : q<x<p}. The proof is based on the characterization of excessive functions
and a method of modifying the payment function (see [4]).
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V. V. Rodochenko and O. E. Kudryavtsev (Rostov-on-Don, Russia) — Appli-
cation of the Wiener–Hopf factorization to the calculation of the risks of the
intersection of price barriers in the Heston model.11

To illustrate a method of risk management of a securities portfolio based on analysis and
hedging of the risks of yielding prices for a fixed barrier, we consider in the Heston model
a barrier option put with a barrier from below. Using Carr’s randomization procedure
and a suitable replacement [1] to eliminate the correlation between the price and variation
processes, we get the opportunity to reduce the calculation of the contract-free price of the
contract to a recurrent solution of a family of problems with stochastic variation.

Analogously [1], we use an approximation of the CIR variation process with the help of
the Markov chain, after which we construct an approximation of the desired functional in
the form of a family of problems with fixed variation, each of which can be solved with the
help of the Wiener–Hopf factorization [2]. It is possible to generalize the method to the case
of models admitting jumps.
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V. V. Shamraeva (Rostov-on-Don, Russia) — Inequalities that ensure the ful-
fillment of interpolation properties of martingale measures.12

Among martingale measures of the incomplete market, which generate an open interval
of fair prices for the payment obligation, in the case of a countable probability space for a
large number of (B, S)-markets, there are interpolation martingale measures that generate
“more fair” prices. In this paper we consider martingale measures for one-step (B, S)-markets
satisfying the weakened condition of noncoincidence of barycenters (WCNB; see [1]), which
allows one to interpolate (with respect to arbitrary interpolating special Haar filtering) an
incomplete market to a complete market. Consider the filtration (Ω, F), where F = (F0,F1),
F0 = {Ω,�}, and F1 is generated by splitting Ω into a countable number of atoms Bi,
i ∈ N = {1, 2, . . . }. We define the process Z = (Zn,Fn)1n=0, considered the discounted share
price, and denote it by Z0 = a, Z1|Bi = bi. Suppose that B1 < b2 < b3 < b4; each of these
numbers can be present in the sequence B5, b6, . . . a finite or infinite number of times, and
there are no other numbers in this sequence. Let such a market be unbiased, with a 6= b2 and
a 6= b3. The report demonstrates a new technique for proving the existence of interpolation
martingale measures, which makes it possible to obtain results more general than in [1]. It is
based on the replacement of complex inequalities from the WCNB containing various vague
subsets of N by simpler inequalities containing concrete components of martingale measures.
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S. Ya. Shatskikh and L. E. Melkumova (Samara, Russia) — Geometry of con-
ditional quantiles of multidimensional probability distributions.13

For n-dimensional probability distribution F1...n(x1, . . . , xn) we consider the determi-
nant (see [1])

(1) ω =

∣∣∣∣∣∣∣∣∣
dx1 . . . dxn−1 dxn

1 . . . q̇
(xn−1,x1)

n−1 | 1 (x1) q̇
(xn,x1)

n | 1 (x1)

. . . . . . . . . . . .

q̇
(x1,xn−1)

1 |n−1 (xn−1) . . . 1 q̇
(xn,xn−1)

n |n−1 (xn−1)

∣∣∣∣∣∣∣∣∣ ,
constructed from the derivatives of one-dimensional conditional quantiles q̇

(xi,xj)

i|j (xj):

Fi | j
(
q
(x0
i ,x

0
j )

i | j (xj) |xj
)

= Fi | j(x
0
i |x0

j ),

where Fi | j(xi |xj) is a conditional distribution function.
Theorem. If for probability distribution F1...n(x1, . . . , xn) all k-dimensional conditional

quantiles q
(x0)

i|1 ... k(x1, . . . , xk), i = k + 1, . . . , n, where

Fi | 1...k

(
q
(x0)

i | 1...k(x1, . . . , xk) |x1, . . . , xk
)

= Fi | 1...k(x 0
i |x 0

1 , . . . , x
0
k ),

have the property of reproducibility under the restriction to one-dimensional conditional quan-
tiles (see [2]) and a minor, constructed on the intersection of the first k columns and k rows,
starting from the second, of the determinant (1), differs from 0, then the surface in Rn, given
by conditional quantiles

(2)
{(
x1, . . . , xk, q

(x0)

k+1 | 1...k(x1, . . . , xk), . . . , q
(x0)

n | 1...k(x1, . . . , xk)
)}
,

is a k-dimensional solution of the Pfaff quantile equation

(3) ω = 0.

Hence, solving (3), we find k-dimensional conditional quantiles with respect to the two-
dimensional marginal distributions of the original multidimensional distribution. When the
Darboux class (see [2]) of the form ω equals 2(nk)−1, the surface (2) is an integral manifold
of (3) of maximum possible dimension passing through the point (x 0

1 , . . . , x
0
n).

As a statistical application of the theorem, an approach to the estimation of multivariate
conditional quantiles of a distribution on two-dimensional observations is considered in the
case when this distribution has the reproducibility property. It is shown that the volume of
two-dimensional observations necessary for constructing an estimate of a multidimensional
quantile within the framework of the proposed approach is substantially smaller than the
volume of observations of the full dimension, necessary for constructing traditional estimates
of multidimensional conditional quantiles. An example of constructing an estimate of a
conditional quantile for an elliptically contoured distribution is considered.
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A. N. Shiryaev (Moscow, Russia) — Randomness in probability.

The subject of this overview is focused on the concept of randomness and, more specifi-
cally, how it would be possible to determine formally what is an individual random sequence.

According to A. N. Kolmogorov (IV Soviet–Japanese Symposium, 1982), “in everyday
speech we call random those phenomena where we do not find regularity, which would allow
us to accurately predict their results. Generally speaking, there is no reason to believe that
a random phenomenon should have any certain probability. Therefore, we should have to
distinguish between proper accident (as the lack of regularity) and stochastic randomness
(which is an object of probability theory).”

In this report we adhere to the following plan:

2. Von Mises’ frequency theory of probability.

3. Frequency stability, or stochasticity (Mises, Wald, Church, Kolmogorov, Loveland).

4. Typicality, or belonging to a set of effective measure unit (Martin-Löf, Levin, Shnorr).

5. Complexity, or randomness (Kolmogorov, Levin, Shnorr).

6. Unpredictability (Will, Uspensky).

I. M. Sonin and S. A. Molchanov (Charlotte, USA) — Conditional expectations
and transfusion from empty to empty.

About 10 years ago Cherny and Grigoriev [1] obtained the following surprising result.

Theorem. Let (Ω, F,P) be a probability space without atoms and X,Y be bounded
functions with the same distribution. Then for any ε > 0 there exists a sequence of σ-
subalgebras F1, . . . , Fn ⊆ F such that for the sequence of functions X0 = X, X1 = E (X0 |F1),
X2 = E (X1 |F2), . . . , Xn = E (Xn−1 |Fn), the inequality ||Xn − Y || ≤ ε holds.

If a σ-algebra is defined by a finite or countable partition, then the conditional math-
ematical expectation of the function is nothing more than the averaging of this function
with respect to the more “rough” decomposition. The partition of the interval [0, 1] into 2n
equal intervals is equivalent to the following “hydrostatic” problem. Suppose that there are
2n cups; the n left ones are filled with water, and n on the right are empty. The left and
right cups can be joined together so that the liquid levels in them are aligned. The theorem
mentioned is equivalent to the following assertion: if n is sufficiently large, then almost all
the water can be pumped from left to right. Here we answer the two questions raised by
this theorem. What is the optimal method of transfusion, and how much will remain for a
fixed n? We describe all optimal transfusions and prove that the first term of the asymptotic
in this problem has the form 2/

√
nπ. Another interpretation of the Cherny and Grigoriev

theorem, without answers to these two questions, is given in [2].
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I. V. Tsvetkova (Rostov-on-Don, Russia) — An algorithm for construction of
interpolation martingale measures in the case of a countable probability space
and finite-valued stock prices.14

We consider a one-step (B,S)-market, which is defined on (Ω,F), where F = (Fk)1k=0,
F0 = {Ω,Ø}, and F1 is a σ-algebra, generated by the partition Ω to the countable number
of atoms Bi, i ∈ N = {1, 2, . . . }. Let Z = (Zk,Fk)1K=0 be an F-adapted random process
with values Z0(Ω) = a, Z1(BI) = bi, a ∈ Q, bi ∈ Q, i ∈ N (Q is a set of rational
numbers). Suppose that among the elements of the sequence {bi}∞i=1 there are only r different

14This work was supported by RFBR grant 16-01-00184.
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(3 6 r < ∞) and at least two values with infinite multiplicity. The considered market is
incomplete. Suppose that it is arbitrage free (inf16i<∞ bi < a < sup16i<∞ bi). The transition
from incomplete markets to fulls provided with the help of special Haar interpolation, which
presupposes the existence of martingale measures that satisfy a special interpolation property
(see [1]). Based on the results presented in [2], an algorithm for computing such martingale
measures is obtained.
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S. I. Uglich, I. V. Pavlov, and N. P. Krasiy (Rostov-on-Don, Russia) — Numeri-
cal analysis of analytical results obtained in the study of quasilinear models with
random priorities.15

In this report, analytical results obtained in [1], as well as in the report by Krasny at the
OTNA-2016 Conference in Rostov-on-Don, were used. In these papers an extremal problem
with the following objective function is considered:

F (x) = EP (Fα1
1 Fα2

2 ), where Fk(x) =

( n∑
i=1

aki xi + bk
)
I{∑n

i=1 a
k
i
xi+bk>0}.

aki , bk are real numbers; x = (x1, x2, . . . , xn) ∈ Rn; I is a characteristic function; and
αk = αk(ω) are nonnegative random variables, called priorities, defined on (Ω,F , P ). In
cases when random variables α1 and α2 are connected by the relation α1 + α2 = 1 or are
independent and do not exceed one, the main result is formulated identically. The necessary
condition is the following: the global maximum exists if there exists a number c > 0 such
that a2

i = −c · a1
i . The parameter c determines the degree of opposition of the requirements

of two systems with the objective functions F1 and F2. It is shown that for any c > 0 the
maximum points of the function F are a hyperplane of the form

∑n
i=1 aixi = t∗, where t∗ is

a root of some equation. The report shows the dependence of the maximum value F ∗ of the
function F on the parameter c for different α1 and α2. Especially important for applications
are cases where F ∗(c) has a global minimum (for example, when α1 and α2 are uniformly
distributed).
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V. V. Ulyanov (Moscow, Russia) — General approach leading to estimates of
accuracy of approximation.16

In the first part of our talk we give a brief review of recent results on estimates of
accuracy of approximations for distribution of linear forms of random elements. We focus
on the results for quadratic forms and almost quadratic forms, research that is motivated by
asymptotic problems of mathematical statistics (see, for example, [1]). We give asymptotic
results where we specify only the approximation order in n, where n is a number of random
elements (a sample size), and in p, a dimension of random elements (observations) for p,

15This work was supported by RFBR grants 16-01-00184 and 16-07-00888.
16This work was supported by RNF project 14-11-00196.
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compared to n. We also give nonasymptotic results when, instead of decreasing order, more
informative inequalities for accuracy of approximation were proved. General nonlinear forms
(see, for example, [2], [3], and [4]) also occurred, as a rule, in multidimensional statistics.

In order to obtain the results mentioned above, we use different methods. However,
in [5] was proposed an approach permitting us a general sufficiently case to prove nonasymp-
totic results for nonlinear forms, including cases when as approximation we use asymptotic
expansions, and estimates of accuracy of distributions are given in terms of Lyapunov ratios.
In [5] is considered a class of real functions hn(ε, . . . , εn), n > 1, on Rn, symmetric with
respect to all possible permutations of its arguments and such that

hn+1(ε1, . . . , εj , 0, εj+1, . . . , εn) = hn(ε1, . . . , εj , εj+1, . . . , εn)

and
(∂/∂εj)hn(ε1, . . . , εj , . . . , εn)|εj=0 = 0 for all j = 1, . . . , n.

If we consider a sequence of independent random elements Xj with generalized the
distribution P , then we can choose

hn = EF (ε1(δX1 − P ) + · · ·+ εn(δXn − P ));

i.e., hn is a mean of a smooth functional F of a weighted empirical process with Dirac measures
in X1, . . . , Xn. In other words, hn can be considered as a collection of “contributions” of
random elements Xj . In the general case F depends on these measures nonlinearly. In this
talk we show (see proofs in [5]) that if the “natural” moment conditions on the distribution
X1 are the indicated, then for pointed class of functions hn there exists a “limit” function,
and we can write asymptotic expansions of Chebyshev–Edgeworth type. Here the error of
the estimate is given in |ε|d :=

∑n
i=1 |εi|

d. In this talk we discuss possible applications of the
general approach, in particular in the central limit theorem for weighted sums, when with
large probability with respect to a measure on an (n−1)-dimensional unit ball distributions of
weighted sums are approximated by the normal distribution with accuracy of order O(n−1).
We consider also applications in asymptotic problems for distributions of U -statistics of order
2 and higher and in the central limit theorem for “free” probabilities.
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E. B. Yarovaya (Moscow, Russia) — Stochastic evolution of a system of particles
in a noncompact phase space: An approach using branching random walks.17

Different phenomena arising in statistical physics, homopolymer theory, population dy-
namics, and other applications are often described in terms of the evolution of particle popu-
lations. Such models can be generalized in various directions, one of which is the assumption
that the particles not only produce offspring or die, forming a branching environment, but
also migrate under the influence of some random law. The central problem in such models is

17This work was supported by RSF grant 14-21-00162.
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the study of the evolution of processes in time, depending on the structure of the medium and
the spatial dynamics of the particles. Less studied in this case are processes when the space
in which particles transport occurs is unlimited, and it can be continuous, as in homopolymer
theory, for example, or discrete, as in models of the dynamics of cellular populations. In this
sense, “universal” describes branching random walks with continuous time with respect to
multidimensional lattices — stochastic processes that combine the properties of a branch-
ing process and a random walk. The main problems in the study of the limiting behavior
of branching random walks are related to the existence of phase transitions as the various
parameters of the particle system change, the properties of limiting distribution of particle
populations, and velocity and shape of the propagation of their front. Naturally, the solution
of these problems depends to a large extent on a number of factors that affect the properties
of a branching random walk, among then the randomness of the branching medium, its het-
erogeneity, the number and relative positioning of the sources of multiplication and death
of particles at lattice points, and also such properties of the random walk as symmetry or
symmetry breaking, and the finiteness or infinity of the variance of the jumps. The report
discusses the results obtained in some space-time evolutionary models of branching random
walks; see, for example, [1], [2], [3], [4], [5], [6], [7], [8], and their applications.
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V. G. Zadorozhnii (Voronezh, Russia) — The stabilization of linear systems by
Gaussian random noise.

Consider a linear system of differential equations dx/dt = ε(t, ω)Ax + f(t, ω), where
x ∈ Rn, ε is a scalar random Gaussian process with mathematical expectation E ε and
covariation function b(s1, s2) = E (ε(s1)ε(s2))−E (ε(s1)) E (ε(s2)), ω is a random event, and
f(t, ω) is a random vector process.

A solution of the system x(t, x0) with initial condition x(t0, x0) = x0 is called (compare
with [1]) average stable if for any ε > 0 there exists δ(ε) > 0 such that for any ξ, satisfying
condition ‖E ξ−Ex0‖ < δ(ε), the condition supt≥t0 ‖E (x(t, ξ))−E (x(t, x0))‖ < ε is fulfilled.
If in this case ‖E (x(t, ξ))−E (x(t, x0))‖ → 0 as t→ +∞, then the solution is called average
asymptotically stable.

The considered linear system is stable, asymptotically stable, or average unstable [1] if
and only if ∥∥∥∥ exp

(
A

∫ t

t0

E (ε(s)) ds+
A2

2

∫ t

t0

∫ t

t0

b(s1, s2) ds1 ds2

)∥∥∥∥
is limited for t ∈ [t0,∞), tends to zero as t → +∞, or is unbounded for t ∈ [t0,∞),
respectively.
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Hence we obtained the conditions under which the considered system becomes asymp-
totically stable, although the system dx/dt = Ax is unstable.
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M. V. Zhitlukhin (Moscow, Russia), K. A. Borovkov, Yu. S. Mishura, and
A. A. Novikov — On maxima of Gaussian processes and their approximations.18

This talk is devoted to estimates of mathematical expectations of maxima of Gaussian
processes and their approximations by discrete time processes. Namely, we consider Gaussian
processes Xt with zero mean, which satisfy the inequalities

(∗) C1|t− s|H1 6 (E (Xt −Xs)2)1/2 6 C2|t− s|H2 for all t, s > 0

with some constants C1, C2 > 0 and H1, H2 ∈ (0, 1). A fundamental example of a process of
this type is a fractal Brownian motion BHt , a Gaussian process with parameter H ∈ (0, 1),
with the covariance function

E (BHt B
H
s ) =

1

2
(t2H + s2H − |t− s|2H).

In applications the important problem is seeking (or estimating) mathematical expec-
tations of Gaussian processes, E maxt61Xt; in particular, it allows us to investigate the
asymptotics of the distribution function of the maximum. However, in a general case for
processes with the structure (∗) it is not possible to find the exact mathematical expecta-
tion. Thus, we state several estimates for the given value, and also, bearing in mind the
numerical approximations, we obtain estimates for errors of discrete approximation with the
help of the value E max06i6nXi/n.

The main results are the proofs of the following inequalities.
1. For the process Xt, satisfying (∗),

C1L1√
H1

6 E max
06t61

Xt 6
C2L2√
H2

holds, where L1 = 1/(4πe log 2) and L2 = (15/4)
√

(2π/log3 2).
2. If Xt satisfies the right-hand side of inequality (∗), then for any n > 21/H2 ,

E max
06t61

Xt −E max
06i6n

Xi/n 6
2C2

√
logn

nH2

(
1 +

4

nH2
+

0.0074

(logn)3/2

)
6

7C2

√
logn

nH2
.

3. For fractal Brownian motion BHt and any 0 < H1 < H2 < 1, the estimate

E max
06i6n

BH1
i/n −E max

06i6n
BH2
i/n 6

√
H2 −H1

eH1
logn

holds.
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